Journal of Organometallic Chemistry, 234 (1982) 175–183 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

NEUTRAL AND CATIONIC DICARBONYL COMPLEXES OF MANGANESE(I) WITH DIPHOSPHINES

G.A. CARRIEDO, V. RIERA * and J. SANTAMARIA Department of Inorganic Chemistry, University of Valladolid (Spain) (Received March 1st, 1982)

Summary

The reaction of $BrMn(CO)_5$ with dppm in refluxing toluene gives the neutral compound *cis-cis*-BrMn(CO)₂(dppm)₂ which has been shown by ³¹P NMR spectroscopy to have one dppm monodentate and the other bidentate. This complex reacts with TIPF₆ in dichloromethane solution to give the salt *cis*-[Mn(CO)₂-(dppm)₂]PF₆ or, if the reaction is carried out in the presence of CO, the salt *mer*-[Mn(CO)₃(dppm)₂]PF₆, which also has one monodentate dppm (by ³¹P NMR). The cationic complex *cis*-[Mn(CO)₂(dppm)₂]⁺ isomerizes to the *trans*-isomer when irradiated with UV light, while heating of the latter gives back the *cis*-isomer. The perchlorate salts of the cation *cis*-[Mn(CO)₂(dppm)₂]⁺ can be prepared by reacting *fac*-O₃ClOMn(CO)₃(dppm) with dppm in refluxing toluene, and *trans*-[Mn(CO)₂(diphos)(diphos)']⁺, diphos or diphos' being dppm or dppe, by treating the *fac*-O₃ClMn(CO)₃(diphos) with dppm or dppe under UV irradiation.

Introduction

The reaction between $BrMn(CO)_5$ and the potentially bidentate diphosphine dppm * has been previously studied [1,2], but, as far as we know, only the species *cis*-BrMn(CO)₄(dppm) [2], *fac*-BrMn(CO)₃(dppm) [1,2] and *trans*-BrMn(CO)(dppm)₂ [1] have been reported. It has been shown, however, that the tricarbonyls *fac*-BrMn(CO)₃(diphos) (diphos = dppm or dppe) undergo facile CO substitution by phosphorus donor ligands L to give the dicarbonyls *cis*-*cis*-BrMn(CO)₂(diphos)L [3,4], which are similar to other bromocarbonyls containing polydentate phosphines [3,5,6,7], e.g. BrMn(CO)₂(triphos) (triphos = PhP-

^{*} Throughout this paper the diphosphines $(Ph_2P)_2(CH_2)_n$ are referred as dppm (n = 1) or dppe (n = 2).

 $(CH_2CH_2PPh_2)_2$ [3]. These results, and the observation that the dppm can be monodentate [8], suggested that the *fac*-BrMn(CO)₃(dppm) might react with dppm to give *cis-cis*-BrMn(CO)₂(dppm)₂. On the other hand, this neutral dicarbonyl could be an intermediate in the formation of *trans*-BrMn(CO)(dppm)₂ from BrMn(CO)₅ and an excess of dppm [1].

Accordingly, we have found that, when a mixture of $BrMn(CO)_5$ and dppm is refluxed in toluene, the complex *cis-cis*- $BrMn(CO)_2(dppm)_2(I)$ is formed. Moreover, irradiation of I with UV light gave *trans*- $BrMn(CO)(dppm)_2$. The structure of I, with one dppm monodentate in *cis* with the Br atom, suggested that this complex should be able to react with halide abstractors to give the hitherto unknown *cis*- $[Mn(CO)_2(dppm)_2]^+$ cation, and this has been also confirmed by experiment.

In this paper we also discuss the reactions between the neutral $O_3ClOMn(CO)_3$ -(diphos) and the diphosphine (diphos = dppm or dppe) under various conditions, and also the $cis \rightarrow trans$ and $trans \rightarrow cis$ isomerizations in the cation [Mn(CO)₂-(dppm)₂]⁺.

Results and discussion

On refluxing a mixture of $BrMn(CO)_5$ and dppm (1/2 molar ratio) in toluene for several hours, the initially formed *fac*-BrMn(CO)₃(dppm) reacts further with the dppm to give the yellow compound cis-cis-BrMn(CO)₂(dppm)₂(I) (reaction i in Scheme 1) which can be crystallized as several solvates *. The analytical results (Table 1) and the osmometric molar mass, determined in benzene (calc. 959, obs. 1000) agreed with the monomeric formulation of I. The molar conductivity in 5×10^{-4} M acetone solution (Table 1) clearly indicated that it was a non-electrolyte. The IR spectrum showed two bands of nearly the same intensity in the ν (CO) region at 1938 and 1867 cm⁻¹ (Cl₂CH₂ solution) which are very close to those reported for similar compounds [3,5,6,7], and so the two CO's are mutually *cis*. The proton-decoupled ³¹P NMR spectrum of I taken in Cl_2CH_2 at room temperature showed a sharp doublet centered at 27.6 ppm ** and three broad multiplets centered at circa -0.8, -36 and -51 ppm. Nevertheless, on cooling to -60° C, all these signals are resolved as three double doublets and a doublet of doublet of doublets, respectively. This pattern, and the fact that only the three signals at lower fields are broad (the ones of the phosphorus directly bonded to the ⁵⁵Mn atom which has I = 5/2), are consistent with the structure proposed for I (Fig. 1(a)). The resulting ³¹P chemical shifts (δP , ppm), coordination chemical shifts (Δ) [11], and phosphorus—phosphorus coupling constants ($^{x}J(P-P)$, cps), namely: δPa 30.2 (Δa 6.6), δPb -49.1 (Δb -72.6), $\delta Pc = 1.6 (\Delta c = 25.2), \delta Pd = 35.6 (\Delta d = 49.1), {}^{2}J(Pa = Pb) 19, {}^{2}J(Pb = Pc) 46,$ $^{2}J(Pb-Pd)$ 67, $^{2}J(Pc-Pd)$ 33 and $^{4}J(Pa-Pd)$ ca. 4.5 (the signs of the J(P-P)) were not determined), are reasonable on the basis of other work [12-20]. The

^{*} Small amounts of the known HMn(CO)₃(dppm) [9] and Mn₂(CO)₅(dppm)₂ [10] were also detected (by their ν (CO) bands) among the products.

^{**} Throughout this paper resonances downfield from external 85% H₃PO₄ are assigned negative shifts. For the free dppm $\delta P = 23.6$.

ABLE 1	
Ē	

1 <u>7</u> -1
UNDS
OMPO
THE C
TS OF
RESUL
ICAL I
ALYT
N۲

	Compound	M.p. a	A ^b (c. <u></u> 2	A nalysis (Found	l (calcd.) (%))	v(CO) °	requencies
		6		v	И	(1112)	
н	ols-cis-BrMn(CO)2(dppm)2	187	6'0	65,0(65,1)	4.78(4.59)	1938s	1867s
Ia	cis-cis-BrMn(CO)2(dppm)2 • C ₆ H ₅ CH ₃	187	0.9	67,4(67,4)	5.34(4.94)	1938s	1867s
II	mer-[Mn(CO)3(dppm)2]PF6	152	120	59,1(60,5)	4.51(4.21)	2041w	1963s(br)
IIIa	cis-[Mn(CO)2(dppm)2]Br•Cl3CH	237	81	59.7(59.0)	4.68(4.20)	1960s	$1906s^{d}$
dIII	cis-[Mn(CO) ₂ (dppm) ₂]PF ₆	297	138	60.8(60.9)	4.23(4.29)	1961s	$1908s^{\ell}$
IIIc	cis-[Mn(CO)2(dppm)2]ClO4	278	123	63.8(63.8)	4.84(4.52)	1961s	$1908s^{e}$
VI	traits-[Mn(CO)2(dppm)2]ClO4	277 [[]	132	63,4(63,8)	4.52(4.52)	1916s	
>	trans-[Mn(CO)2(dppm)(dppe)]ClO4	239	128	64.3(64.1)	4.80(4.63)	1909s	
7	trans-[Mn(CO)2(dppe)2)ClO4	237	132	63,2(64,4)	4.81(4.99)	1899s	

^a All with decomposition. ^b In 5 X 10⁻⁴ acetone solution near 25°C, ^c In Cl₂Cll₂ solution. ^d In the solid state the bands are at 1942 and 1890 cm⁻¹, ^e in the solid state at 1938 and 1878 cm⁻¹, ^f At circa 200°C the colour changed from orange to yellow.

value of ${}^{2}J(Pa-Pb)$ is, however, low as compared with the reported 64.4 for the analogous complex *mer*-Mo(CO)₃(dppm)₂ [12], and with other coupling constants between the coordinated phosphorus and the uncoordinated one in other

monodentate polyphosphine complexes [12,14,15,16,21]. The ¹H NMR spectrum of I showed the resonances of the Ph-groups as two broads multiplets centered at 7.1 and 6.9 (δ) and the signals of the CH₂-groups as two broad complex multiplets between 3.5–3.9 and 4.6–4.9 (δ), which are close to those reported for the analogous complex [Mo(CO)₂(dppm)₂X]⁺, in which one dppm is monodentate and the other bidentate [22].

The reaction between I and CO (1 atm) in the presence of $TlPF_6$ in Cl_2CH_2 at room temperature (ii in Scheme 1) gave mainly (see below) the yellow salt *mer*-

SCHEME 1

 $[Mn(CO)_3(dppm)_2]PF_6$ (II), analogous to the neutral Mo complex mentioned above [12]. The analytical and conductivity data for II (Table 1) were in accord with this formulation. The $\nu(CO)$ IR spectrum in Cl_2CH_2 solution

showed a weak band at 2041 and a strong broad band at 1963 cm⁻¹, which is the pattern observed for other analogous cationic *mer*-tricarbonyls [4,23]. Thus, the fact that II is not a *fac*-tricarbonyl provides further support for the structure proposed for I. One sharp doublet centered at +27.0 ppm (separation of 58 cps) in the ³¹P{¹H} spectrum of II in Cl₂CH₂ at room temperature, clearly evidenced the presence of one monodentate dppm in this complex. The spectrum also showed three partially resolved multiplets centered at circa -10, -30 and -49.5 ppm, which is also consistent with the structure shown in Fig. 1(b) (²J(*ab*) \approx 58). Other five sharp peaks centered at +144 ppm and separated by an average of 708 cps were assigned to the heptet of the PF₆⁻ anion (¹J(P-F) 708).

It has been found that the reaction of $BrMn(CO)_5$ with dppm under UV irradiation in benzene gives fac-BrMn(CO)₃(dppm) or trans-BrMn(CO)(dppm)₂ [1]. However, the reactions between BrMn(CO)₅ and the phosphorus-donor ligands are believed to proceed stepwise [3], and the unstable cis-BrMn(CO)₄(dppm) has been shown to be an intermediate in the formation of fac-BrMn(CO)₃(dppm) [2]. Thus, it seemed likely that the cis-cis-BrMn(CO)₂(dppm)₂(I) could be an intermediate in the formation of the highly substituted monocarbonyl. In accord with this we observed that the irradiation of I with UV light (iiia in Scheme 1) results in substitution of the CO cis to the Br atom by the free Ph₂P group of the monodentate dppm. The structure of the resulting trans-BrMn(CO)-(dppm)₂ (identical to the reported on [1]) was confirmed by reacting it with CO (1 atm) and TlPF₆ in Cl₂CH₂, a reaction which led to the orange salt trans-[Mn-(CO)₂(dppm)₂]PF₆. (iiib in Scheme 1). This latter compound has been prepared by several methods in the present study and will be considered later.

A vellow precipitate was also formed in reaction (i) along with compound I. The same yellow product was obtained when a solution of I in toluene was refluxed for several hours (iva in Scheme 1). The compound was recrystallized from $Cl_{2}CH$ hexane and characterized tentatively as the salt cis-[Mn(CO)₂- $(dppm)_2$]Br · Cl₃CH (IIIa), analogous to the known cis-[Re(CO)₂(dppe)₂]Br [24]. The analytical data, conductivity and ν (CO) region IR spectrum (two strong bands at 1960 and 1906 cm^{-1} in Cl_2CH_2) were in accord with its formation. Moreover, stirring a Cl_2CH_2 solution of IIIa with $TlPF_6$ gave the yellow salt cis-[Mn(CO)₂(dppm)₂]PF₆ (IIIb). This latter was also prepared by reacting I with TIPF₆ as shown in reaction iv b of Scheme 1. The compound IIIb is also formed together with the $mer-[Mn(CO)_3(dppm)_2]PF_6$ in the reaction between I and $TlPF_6$ in the presence of CO (see above), in which there is competition between the uncoordinated $-PPh_2$ and the CO to occupy the vacant coordination site left by the Br⁻. The IR spectrum of IIIb in Nujol showed two strong ν (CO) frequencies at 1938 and 1878 cm⁻¹ (very low as compared with the values of 1961 and 1908 $\rm cm^{-1}$ observed in $\rm Cl_2CH_2$ solution), and the strong band at 834 cm⁻¹ due to the octahedral PF_6^- anion. The ³¹P-{¹H} NMR spectrum of IIIb in Cl_2CH_2 at -60°C, showed two partially resolved complex multiplets (AA'BB' pattern) centered at -25.7 and -8.2 ppm, consistent with the *cis* structure proposed for it. The other signals centered at +144 ppm separated 708 cps, were those of the PF_6^- anion.

The UV irradiation of a Cl_2CH_2 solution of IIIb (v in Scheme 1) gave the orange *trans*-[Mn(CO)₂(dppm)₂]PF₆, as evidenced by IR spectroscopy. The complex isolated from this reaction had only one ν (CO) absorption in the IR at

1916 cm⁻¹ as expected for a *trans*- dicarbonyl, and the full range IR spectrum of the solid (KBr disk) also showed the presence of the anion PF_6^- (834 cm⁻¹). Although the salts $cis[Mn(CO)_2(dppm)_2] A (A = PF_6^- \text{ or } ClO_4^-)$ isomerized to the *trans* isomer under UV irradiation, heating of the latter in refluxing toluene resulted in the re-formation of the original *cis*-isomer (vi in Scheme 1), and so the *cis* isomer is evidently more thermally stable than the *trans*. This is in accord with the greater thermodynamic stability of the *cis*-Mo(CO)₂(dppm)₂ [25] and *cis*-[Re(CO)₂(dppm)₂]⁺ [24] compared with their *trans*-isomers.

Previously we have reported [23] that the neutral perchlorate complex fac- $O_3ClOMn(CO)_3(dppm)$ reacts with phosphites (L) under different conditions to give fac-[Mn(CO)₃(dppm)L]ClO₄ (room temperature), mer-[Mn(CO)₃- $(dppm)L]ClO_4$ (120°C) or trans-[Mn(CO)₂(dppm)L₂]ClO₄ (UV irradiation), but this could not be achieved with ligands with lower π -acceptor ability. Similarly the reaction between $fac-O_3ClOMn(CO)_3(dppm)$ and dppm under UV irradiation gave trans- $[Mn(CO)_2(dppm)_2]ClO_4$ (IV) (vii in Scheme 1). The analogous salts trans-[Mn(CO)₂(diphos)(diphos)']ClO₄ (V) and (VI) (Table 1), were prepared in the same manner by reacting $fac-O_3ClOMn(CO)_3(dppe)$ with dppm or dppe^{*}. Thus in those cases, the diphosphines resemble the phosphites in their ability to displace CO groups, as noted previously [1,26]. Monitoring by IR spectroscopy showed that the reactions proceeded stepwise, and that the cations fac-[Mn(CO)₃(diphos)₂]⁺ (ν (CO) in the region of 1935s, 1960s cm⁻¹) and possibly mer-[Mn(CO)₃(diphos)₂]⁺ (ν (CO) at about 2040w, 1960s cm⁻¹), presumably with one diphosphine monodentate, were intermediates in the formation of the trans-dicarbonyls. No clear evidence of the presence of cis-[Mn- $(CO)_2(diphos)_2$ ⁺ as an intermediate was observed. Attempts to prepare fac- and $mer-[Mn(CO)_3(diphos)_2]ClO_4$ by reacting $fac-O_3ClOMn(CO)_3(diphos)$ with the diphosphine at room temperature or in boiling ethanol, respectively, for diphos = dppm or dppe, gave yellow solids with the correct IR spectra and which could be converted into the trans- $[Mn(CO)_2(diphos)_2]ClO_4$ by UV irradiation. Nevertheless we did not obtain satisfactory analytical results, probably due to the formation of bridged species. It was also observed that the heating of fac-O₃ClOMn(CO)₃(dppe) in boiling ethanol gave trans-[Mn(CO)₂(dppe)₂]- ClO_4 directly. The IR spectra of the solids trans-[Mn(CO)₂(diphos)₂]ClO₄ showed the broad strong absorption at 1090 cm⁻¹ of the ClO_4^- anion and only one strong band in the $\nu(CO)$ region. The frequency of this band (A2u in approximate D4h symmetry) in Cl_2CH_2 solution is higher in the dppm complexes (see Table 1), in accord with the trend observed in other complexes with diphosphines [23]. The ³¹P-{¹H} NMR spectrum of the salt trans-[Mn(CO)₂- $(dppm)_2$ ClO₄ in Cl₂CH₂ at room temperature showed only one singlet at -33ppm, which is consistent with the equivalency of the four phosphorus atoms. By comparing this chemical shift at -33 ppm ($\Delta = -56.6$) with the value of -49 ppm ($\Delta = -72.6$) for the coordinated phosphorus of the monodentate dppm in I or II, the shielding ring contribution $(+\Delta_R)$ [19,28] of the formation of the dppm four membered chelate ring can be estimated as +16 ppm. Com-

^{*} The compound *trans*-[Mn(CO)₂(dppe)₂]ClO₄ was already known [27].

parable values have been reported [29] for the complexes cis-M(CO)₄(dppm) e.g. $\Delta_R = +12$ (M = Cr) or 19.3 (M = Mo).

On the other hand, when the reaction between $fac-O_3ClOMn(CO)_3(dppm)$ and dppm was carried out in refluxing toluene (viii in Scheme 1), the salt *cis*- $[Mn(CO)_2(dppm)_2]ClO_4$ (IIIc) was obtained instead of the *trans*-isomer. This result is in accord with the greater thermal stability of the *cis*-isomer as discussed above. Some $[Mn(CO)_4(dppm)]ClO_4$ [23] was also formed in the reaction viii, probably due to the decomposition of some $fac-O_3ClOMn(CO)_3(dppm)$.

Finally, UV irradiation of a mixture of cis-[Mn(CO)₂(dppm)₂]PF₆ and BrNEt₄ in Cl₂CH₂ (ix in Scheme 1) gave the same trans-BrMn(CO)(dppm)₂ as was obtained by irradiation of cis-cis-BrMn(CO)₂(dppm)₂ (I). The latter compound was not found as an intermediate in the reaction ix (by monitoring by IR). Thus, unless the formation of the monocarbonyl from I (see iiia in Scheme 1) is very fast compared with the formation of I by nucleophilic attack of the Br⁻ on the cis-[Mn(CO)₂(dppm)₂]⁺, it is possible that the Br⁻ initially displaces one CO in the latter cation and this is followed by the isomerization of the resulting cis-BrMn(CO)(dppm)₂ to the obtained trans-monocarbonyl. The same trans-BrMn(CO)(dppm)₂ was formed when the salt cis-[Mn(CO)₂(dppm)₂]Br was irradiated with UV light, resembling the formation of BrRe(CO)(dppe)₂ upon heating of cis-[Re(CO)₂(dppm)₂]PF₆ in the presence of Br⁻ anion resulted only in decomposition.

Experimental

The reactions were carried out under N₂. The IR spectra were recorded with a Perkin—Elmer 599 Spectrometer and calibrated against the polystyrene absorption at 1602 cm⁻¹. The ³¹P NMR were obtained with JEOL FX90Q instrument using external 85% PO₄H₃ as reference. The complexes *fac*-O₃ClOMn(CO)₃-(diphos) were prepared as described elsewhere [23].

Reaction of BrMn(CO)₅ and dppm

A mixture of $BrMn(CO)_5$ (0.2 g, 0.73 mmol) and dppm (0.62 g, 1.61 mmol) was refluxed in toluene (15 ml) for 5 h. The yellow precipitate of impure *cis*- $[Mn(CO)_2(dppm)_2]Br$ (0.1 g) was filtered off and the resulting orange solution was kept overnight at -10° C to give yellow crystals of *cis-cis*-BrMn(CO)₂- $(dppm)_2 \cdot C_6H_5CH_3$ (0.24 g, 31%). Recrystallization from toluene or $Cl_2CH_2/$ hexane followed by prolonged drying in vacuo gave pure I (the reaction time and the yield depend upon the amount of dppm used, the scale, and the volume of toluene employed).

Preparation of cis- $[Mn(CO)_2(dppm)_2]A$ (A = PF_6^- or ClO_4^-)

(a) from cis-cis-BrMn(CO)₂(dppm)₂ (I). The complex I (0.23 g, 0.24 mmol) and TlPF₆ (0.4 g, 1.1 mmol) were stirred overnight in Cl₂CH₂. The mixture was filtered and the solution was evaporated to dryness. The residue was washed with diethyl ether to give 0.11 g (50%) of cis-[Mn(CO)₂(dppm)₂]PF₆. Recrystallization was from Cl₂CH₂/hexane.

(b) from $fac-O_3ClOMn(CO)_3(dppm)$. A suspension of $fac-O_3ClOMn(CO)_3$ -

(dppm) (0.44 g, 0.7 mmol) and dppm (0.36 g, 0.93 mmol) in toluene (15 ml)

was refluxed for 45 min. The resulting yellow precipitate was washed with hot toluene and diethyl ether and recrystallized from Cl_2CH_2 /hexane to give 0.5 g (72%) of *cis*-[Mn(CO)₂(dppm)₂]ClO₄. Recrystallization was from Cl_2CH_2 / ethanol.

(c) from trans-[Mn(CO)₂(dppm)₂]ClO₄. A suspension of the salt trans-[Mn(CO)₂(dppm)₂]ClO₄ (0.095 g, 0.097 mmol) in 10 ml of toluene was refluxed for 3 h. The yellow precipitate of cis[Mn(CO)₂(dppm)₂]ClO₄ (0.089 g, 94%) was recrystallized from Cl₂CH₂/ethanol.

Preparation of mer- $[Mn(CO)_3(dppm)_2]PF_6$

CO gas (1 atm) was bubbled for 3 h through a stirred mixture of *cis-cis*-BrMn- $(CO)_2(dppm)_2$ (0.2 g, 0.21 mmol) and TlPF₆ (0.09 g, 0.25 mmol) in 20 ml Cl₂CH₂. Filtration and evaporation of the solvent gave ca. 0.13 g of a mixture of *mer*-[Mn(CO)₃(dppm)₂]PF₆ and *cis*-[Mn(CO)₂(dppm)₂]PF₆. The *mer*-tricar-bonyl was extracted with toluene and the extracts were evaporated to half volume. Addition of hexane led to precipitation of *mer*-[Mn(CO)₃(dppm)₂]PF₆, which was recrystallized from Cl₂CH₂/hexane. The yield depends upon the amount of the *cis*-dicarbonyl formed, which varies with the scale of the reaction, the concentration and the stirring conditions.

Preparation of trans-[Mn(CO)₂(diphos)₂]ClO₄

A magnetically stirred solution of fac-O₃ClOMn(CO)₃(dppm) (0.25 g, 0.4 mmol) and dppm (0.18 g, 0.48 mmol) in 20 ml of Cl₂CH₂ was irradiated with UV light for 2 h. After filtration, ethanol (10 ml) was added and the solution concentrated at reduced pressure. Addition of diethyl ether completed the precipitation of trans-[Mn(CO)₂(dppm)₂]ClO₄ (0.15 g, 38%), which was recrystallized several times from Cl₂CH₂/ethanol.

Following the same procedure, the complex fac-O₃ClOMn(CO)₃(dppe) was reacted with dppm to give trans-[Mn(CO)₂(dppe)(dppm)]ClO₄ (6 h, 42% yield) and with dppe to give the known [27] trans-[Mn(CO)₂(dppe)₂]ClO₄ (4 h, 89% yield).

The trans- $[Mn(CO)_2(dppm)_2]ClO_4$ was also prepared in 56% yield by UV irradiation of a Cl_2CH_2 solution of cis- $[Mn(CO)_2(dppm)_2]ClO_4$.

References

- 1 R.H. Reiman and E. Singleton, J. Organometal. Chem., 38 (1972) 113.
- 2 R. Colton and J. McCormick, Aust. J. Chem., 29 (1976) 1657.
- 3 I.S. Buttler, N.J. Coville and H.K. Spendjian, J. Organometal. Chem., 43 (1972) 185.
- 4 F. Bombin, G.A. Carriedo, J.A. Garcia and V. Riera, J. Chem. Soc., Dalton, (1981) 2049.
- 5 I.S. Buttler and N.J. Coville, J. Organometal. Chem., 66 (1974) 111.
- 6 R.B. King, R.N. Kapoor, M.S. Saran and P.N. Kapoor, Inorg. Chem., 10 (1971) 1851.
- 7 R.B. King, P.N. Kapoor and R.N. Kapoor, Inorg. Chem., 10 (1971) 1841.
- 8 C.A. McAuliffe and W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements Elsevier, Sci. Pu. Co. Amsterdam, 1979, p. 213.
- 9 F.W. Einstein, E. Enwall, N. Flitcroft and J.M. Leach, J. Inorg. Nucl. Chem., 34 (1972) 885.
- 10 R. Cotton and C.J. McCommons, Aust. J. Chem., 28 (1975) 1673.
- 11 S.O. Grim, D.A. Wheatland and M. McFarlane, Inorg. Chem., 6 (1967) 1133.
- 12 E.E. Isaac, W.A.G. Graham, Inorg. Chem., 14 (1975) 2560.
- 13 J.A. Connor, J.P. Day, E.M. Jones and G.K. McEwen, J. Chem. Soc., Dalton, (1973) 347.

- 14 E.E. Isaac and W.A.G. Graham, J. Organometal. Chem., 120 (1976) 407.
- 15 R.J. Mynott, P.S. Progosin and L.M. Venanci, J. Coord. Chem., 3 (1973) 145.
- 16 R.L. Keiter, Y.Y. Sun, J.W. Brodack and L.W. Cary, J. Am. Chem. Soc., 101 (1979) 2638.
- 17 R.B. King and J.C. Lloyd, Jr., Inorg. Chem., 14 (1975) 1550.
- 18 S.O. Grim, J. du Claudio, R.P. Molenda, C.A. Tolman and J.P. Jesson, J. Am. Chem. Soc., 96 (1974) 3441.
- 19 D.A. Edwards and J. Marshalsea, J. Organometal. Chem., 131 (1977) 73.
- 20 J. Ellerman, H.A. Lindner and M. Moll, Chem. Ber., 112 (1979) 3441.
- 21 S.D. Ittel, C.A. Tolman, P.J. Krusic, A.D. English and J.P. Jesson, Inorg. Chem., 17 (1978) 3433.
- 22 R. Colton and J.J. Howard, Aust. J. Chem., 22 (1969) 2543.
- 23 G.A. Carriedo and V. Riera, J. Organometal. Chem., 205 (1981) 371.
- 24 M. Freni, V. Valenti and D. Giusto, J. Inorg. Nucl. Chem., 27 (1965) 2635.
- 25 A.M. Bond, R. Colton and J.J. Jackoswsi, Inorg. Chem., 14 (1975) 275.
- 26 C.A. Tolman, J. Am. Chem. Soc., 92 (1970) 2956.
- 27 A.G. Osborne and M.H.B. Stiddard, J. Chem. Soc. A, (1965) 700.
- 28 P.E. Garrou, Inorg. Chem., 14 (1975) 1435.
- 29 P.S. Pregosin and R.W. Kunz, ³¹P and ¹³C NMR of Transition Metal Phosphine Complexes, Springer-Verlag Berlin-Heidelberg 1979, p. 133.